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Abstract—Reliable communication over the discrete-input/con-
tinuous-output noncoherent multiple-input multiple-output
(MIMO) Rayleigh block-fading channel is considered when the
signal-to-noise ratio (SNR) per degree of freedom is low. Two
key problems are posed and solved to obtain the optimum dis-
crete input. In both problems, the average and peak power per
space–time slot of the input constellation are constrained. In the
first one, the peak power to average power ratio (PPAPR) of the
input constellation is held fixed, while in the second problem,
the peak power is fixed independently of the average power. In
the first PPAPR-constrained problem, the mutual information,
which grows as �������, is maximized up to second order in
SNR. In the second peak-constrained problem, where the mutual
information behaves as ������, the structure of constellations
that are optimal up to first order, or equivalently, that minimize
energy per bit, are explicitly characterized. Furthermore, among
constellations that are first-order optimal, those that maximize
the mutual information up to second order, or equivalently, the
wideband slope, are characterized. In both PPAPR-constrained
and peak-constrained problems, the optimal constellations are
obtained in closed form as solutions to nonconvex optimizations,
and interestingly, they are found to be identical. Due to its spe-
cial structure, the common solution is referred to as space–time
orthogonal rank one modulation, or STORM. In both problems,
it is seen that STORM provides a sharp characterization of the
behavior of noncoherent MIMO capacity.

Index Terms—Capacity, constellation design, energy per bit,
low signal-to-noise ratio (SNR), multiple-input multiple-output
(MIMO), nonconvex optimization, noncoherent communica-
tion, peak power, peak-to-average power ratio, Rayleigh fading,
Space–Time Orthogonal Rank one Modulation (STORM), wide-
band slope.

I. INTRODUCTION

I N this paper, we consider the problem of communicating
reliably over a multiple-input multiple-output (MIMO)

block Rayleigh-fading channel in the low signal-to-noise ratio
(SNR) regime. We assume the noncoherent model, wherein
neither the transmitter nor the receiver are assumed to have
instantaneous channel state information (CSI), while both have
knowledge of the channel distribution. In scenarios where
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the mobile receivers are moving at a high speed or when the
number of transmit antennas is large, channel estimation at
the receiver might be insufficient due to the small coherence
times involved. The problem of the receiver acquiring CSI is
further exacerbated in the low-SNR regime, where the channel
estimates can be unreliable. As a result, the more common
assumption of perfect CSI at the receiver, namely, that of
coherent communications, may not hold true in such cases.

A more fundamental rationale for studying the noncoherent
model is as follows. Since in practice the channel is not known
to the receiver at the start of communication, an informa-
tion-theoretic formulation of the noncoherent problem—which
implicitly accounts for the resources needed for implicit
channel estimation without constraining the transmission
scheme in any way—is more fundamental than the coherent
formulation. Systems that assume coherent transmission by
arguing that the channel can be acquired at the receiver by the
use of pilot-symbol-assisted transmission to perform explicit
channel estimation are inherently suboptimal in general while
not taking into account the resources, namely, energy and
degrees of freedom, needed for pilot transmissions, as they
should.

The study of noncoherent fading channels at low SNR
is motivated by their application in wideband (WB) and
ultra-wideband (UWB) channels. In such scenarios, the signal
power is spread over a large bandwidth, rendering the SNR per
degree of freedom low. Transmissions over WB fading chan-
nels experience both time and frequency selectivity. However,
within a short window of time or frequency, the channel fading
coefficients are known to be highly correlated. One widespread
approach therefore to deal with frequency selectivity is to divide
the original wideband channel into several parallel narrowband
channels such that each narrowband channel experiences flat
fading or a single tap coefficient. To deal with time selectivity,
a common approach is to model each narrowband channel
through block fading. In the block-fading model, the channel
coefficients are assumed fixed for a duration in time following
which they assume independent and identically distributed
(i.i.d.) realizations (here adequate interleaving across time and
frequency windows is implicitly assumed). In this work, we
model the wideband channel as a block-faded narrowband
channel in the low-SNR regime. This simplifying channel
modeling assumption helps capture the essence of the orignal
wideband channel, and is widely adopted in the analysis of
MIMO fading channels.

The study of noncoherent single-input single-output (SISO)
fading channels at low SNR dates back to the 1960s. Two equiv-
alent notions of optimality in the literature that are indicators of
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energy efficiency in the low-SNR regime are 1) the input being
first-order optimal with respect to Shannon capacity or 2) the
input achieving the minimum energy per bit or required
for reliable communication. A classical result by Shannon [1] is
that in the limit of infinite bandwidth or vanishing SNR, the min-
imum energy per bit required for reliable communications over
an additive white Gaussian noise (AWGN) channel is 1.59 dB.
Early work by Kennedy [2], Jacobs [3] (also see Gallager [4] and
the references therein) studied wideband SISO Rayleigh-fading
channels with an average power constrained input and showed
that in the limit of infinite bandwidth or vanishing SNR, the re-
quired minimum energy per bit is again 1.59 dB, the same as
that of an AWGN channel. A remarkable observation then was
that the minimum energy per bit required is the same whether
or not the receiver has knowledge of the channel fading coef-
fecients. Telatar and Tse [5], and Verdú [6] show that the min-
imum energy per bit is 1.59 dB even for fairly general multi-
path SISO fading channels and general MIMO fading channels,
respectively. A common approach adopted to obtain for
fading channels is to consider the achievable rate of a certain
scheme (often -ary frequency-shift keying or MFSK), which
is transmitted at arbitrarily low duty cycles (cf. [2], [4], [5]). The
required result is then obtained by either showing that the en-
ergy per bit of the scheme at vanishing SNR matches that of the
AWGN channel, or by deriving an upper bound on capacity that
is tight with respect to the achievable lower bound. However,
this approach fixes the input a priori, and therefore no determi-
nation can be made as to the necessary conditions for a constel-
lation to achieve the minimum energy per bit. The characteriza-
tion of the class of signals (more generally, input distributions)
that are both necessary and sufficient to achieve the minimum
energy per bit had been an important and long-standing open
problem.

Signals such as arbitrarily low duty-cycled FSK tend to have
prohibitively large peak-to-average-power ratios (PAPR) and
are consequently difficult to implement in practice. Such sig-
nals are therefore referred to as “peaky” signals in the literature.
Using certain types of fourth moments of the input as measures
of peakiness, Médard and Gallager [7], and Subramanian and
Hajek [8] showed that signaling that is not peaky in either time
or frequency dimensions cannot achieve the minimum energy
per bit as SNR . Verdú [6] formalized this notion further
for fairly general noncoherent MIMO fading channels and es-
tablished that flash signaling, where the input distribution con-
verges to a zero mass and a nonzero mass that is transmitted
with vanishing probability as SNR , is both necessary and
sufficient to achieve the minimum energy per bit. While nonco-
herent communications is sufficient to transmit at the AWGN
minimum energy per bit of 1.59 dB, the work in [6] resolves
another major difficulty. It introduces and explains the crucial
role of wideband slope ( ) at large but finite bandwidths. The
wideband slope is a measure of how fast the energy per bit of
the optimal scheme approaches the minimum energy per bit, and
is synonymous with the notion of second-order optimality with
respect to Shannon capacity. One main result of [6] is that for
noncoherent MIMO channels with an average power constraint,
the wideband slope is zero. This result implies that to approach
the minimum energy per bit, the bandwidth for reliable nonco-

herent communications becomes prohibitively large and the as-
sociated signaling scheme prohibitively peaky, and therefore no
realistic (i.e., bandwidth-limited and peak-limited) scheme can
achieve the minimum energy per bit.

Hence, it was important to pose problems that provide
meaningful second-order performance when considering non-
coherent fading channels at low SNR. One way was to impose
suitable peak constraints on the input. It is shown in Rao and
Hassibi [9] that under certain regularity conditions on the signal,
which include making the fourth and sixth moments finite, the
noncoherent MIMO capacity grows as . Similar ex-
pressions for the mutual information up to the second order are
obtained in closed form in [10], [11] with different assumptions
on the fading matrices and peak-power constraints. Even though
such problems have capacity behaving as , and hence
the minimum energy per bit not occurring at a vanishing SNR,
they are important since they involve practical modulation
schemes with reasonable PAPR. Schemes designed to satisfy
such regularity conditions must be deployed in the vicinity of
the SNR where the minimum energy per bit is achieved. Also
relevant is the interesting case of the peak-constraint imposed
being independent of the average power constraint, resulting
in growth of capacity. In this case, it will be shown
here that the wideband slope is not zero anymore (unlike the
average power constraint only problem). Therefore, the energy
per bit approaches the minimum energy per bit at a nonzero
rate as SNR . Gursoy and Verdú [12] consider SISO
Rician fast-fading channels and impose different peak power
constraints in addition to the average power constraint on the
input. For certain combinations of peak and average-power
constraints, they characterize the and for SISO Rician
fast-fading channels. For a combination of peak and average
power constraints, they show that on–off quadrature phase shift
keying (OOQPSK) achieves the minimum energy per bit as
well as the optimal wideband slope for the noncoherent SISO
Rician fast-fading channel. This result is obtained in [12] by
directly evaluating a second-order expansion of mutual infor-
mation for OOQPSK, and this approach cannot be extended to
more general MIMO block-fading models. To the best of the
authors’ knowledge, this is the only input distribution reported
in the literature that is both first- and second-order optimal, in
the context of peak-constrained noncoherent communications
over fading channels.

Abou-Faycal et al. [13] consider a noncoherent SISO
Rayleigh fast-fading channel and prove that the capacity
achieving distribution is discrete with a finite number of
points, one of them being at the origin. In [14], the authors
consider a SISO Rician fast-fading channel and show that the
capacity-achieving distribution is discrete even when certain
types of peak-constraints are imposed. While there is no formal
proof of the discreteness of the optimal input for MIMO
Rayleigh-fading channels, it is expected to be the case. Despite
these results, discrete input optimization of information-the-
oretic measures is rarely considered since the optimizations
encountered are often seen as being analytically intractable.
Another compelling reason for considering the problem of
maximizing mutual information as a finite-dimensional opti-
mization, over a discrete and finite cardinality input is that, the
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solution, if obtainable, would offer insights simultaneously into
information-theoretic as well as coding-modulation aspects.
For, consider that even when capacity achieving probability
distribution functions are found, the problem of practical
transmission would be still unresolved as it would not be clear
how the choice of a quantization of the optimum input would
affect performance. Some recent works that deal with discrete
signal constellation design using information-theoretic criteria
but only under an average power constraint and via numerical
optimization techniques are [15]–[17]. While the results in
[16] provided numerically computable tight lower bounds on
capacity of the noncoherent MIMO channel, the associated
constellations may be hard to implement in practice due to
their limited analytical structure and lack of strict peak or
peak-to-average power ratio constraints.

In this paper, we pose and solve two key problems of ob-
taining the optimum discrete input of finite cardinality for peak-
constrained MIMO noncoherent block Rayleigh-fading chan-
nels in closed form. Given the results of [13], [14], it is expected
that there will be no loss in optimizing over discrete inputs as
opposed to input distribution functions. In both problems, we
assume average power constraints on the input. In addition, we
also assume natural peak constraints per antenna and per time
slot, which closely emulate constraints on power amplifiers, in-
stead of fourth- and higher order moment constraints on the
input used in [7]–[9]. In the first problem, the peak-power to
average-power ratio (PPAPR) of the input constellation is held
fixed, while in the second, the peak power is fixed indepen-
dently of the average power. We refer to these two problems
as the PPAPR-constrained and peak-constrained cases, respec-
tively. We show that interestingly, in the case of the noncoherent
MIMO Rayleigh-fading channel at low SNR, such joint opti-
mizations of information-theoretic metrics over complex signal
matrices and their respective probabilities are indeed analyti-
cally tractable and result in elegant closed-form solutions.

In the PPAPR constrained case, it can be shown that the input
satisfies certain regularity conditions specified in [9]. For such
inputs, the mutual information is obtained up to second order
in [9] and shown to grow as . In one of the key con-
tributions here, we maximize this second-order mutual infor-
mation jointly over the matrix-valued elements of a finite input
constellation and their probabilities, when the cardinality of the
constellations is no greater than , where is the channel
coherence block length.

In the peak-constrained case, the mutual information behaves
as . Here, we explicitly characterize the structure of
constellations of any finite cardinality that are optimal up to first
order, or equivalently, that minimize energy per bit or maximize
capacity per unit energy. More importantly, among constella-
tions of cardinality no greater than that are first-order op-
timal, those that maximize the mutual information up to second
order, or equivalently, the wideband slope, are characterized.

In both PPAPR- and peak-constrained problems, the optimal
solutions are obtained in closed form to finite-dimensional
nonconvex optimizations. Moreover, the solutions are estab-
lished to be both necessary and sufficient to optimize their
respective information-theoretic metrics. Interestingly, the
solutions to both the PPAPR- and peak-constrained problems

are found to be identical. Due to its special structure, we refer
to the common solution as space–time orthogonal rank one
modulation, or STORM.

Moreover, in the PPAPR constrained case, STORM (with car-
dinality ) is shown to be near-optimal even among con-
stellations of unconstrained cardinality, even for modest values
of and PAPR. Hence, there is not much to be gained by using
more than points in this case. In the peak-constrained case,
we first obtain necessary and sufficient conditions for a constel-
lation of any finite cardinality to achieve the minimum energy
per bit. Among all such constellations, when the cardinality is
no greater than , STORM is established as being both first-
and second-order optimal. Our approach provides a far more de-
tailed characterization of the first- and second-order behavior of
noncoherent MIMO capacity than in existing literature. Specif-
ically, we show that when the peak power is less than a certain
threshold, it is possible to have a wideband slope that is nonzero,
and obtain the maximum wideband slope achievable by a
point probability mass function (pmf). Moreover, the energy per
bit and the wideband slope achieved by STORM reveal a funda-
mental energy-versus-bandwidth efficiency tradeoff that enable
the determination of the operating (low) SNR and peak power
most suitable for a given application.

It also follows from our analysis and optimization that while
the conventional MIMO on–off keying (OOK) also achieves the
minimum energy per bit, STORM has a wideband slope that is

times greater which translates into an increase in bandwidth
efficiency (or a decrease in the PAPR) by a factor of in the
wideband regime. Given typical values of the coherence block
length , these gains are potentially huge. Our results and con-
clusions also temper the conclusions of [6] obtained under only
the average power constraint regarding noncoherent communi-
cations over fading channels.

Among the several new insights that STORM provides on
communications in the low-SNR regime one that runs contrary
to conventional wisdom is that, under the practical constraints
considered in this work, it helps to use all available transmit
antennas, not just one, to transmit linearly dependent signals
across them in the low-SNR regime.

Note that in this work, the input distribution is not a priori
assumed or restricted as it is in most prior work. STORM
is obtained through novel techniques involving nonconvex
optimization of information-theoretic measures. Consequently,
our approach provides necessary and sufficient conditions
for a constellation to be optimal for the noncoherent MIMO
Rayleigh-fading channel, resolving a long-standing open
problem. Low duty cycled -ary FSK (MFSK) [2], [4], [5]
which is often proposed to achieve first-order optimality in a
SISO channel, is seen to be closely related to a special case of
STORM. However, the zero symbol in STORM is information
bearing which is not the case in low duty cycled MFSK. This
can make STORM have higher achievable rates especially in the
PPAPR-constrained case. Moreover, in this work, we specify
a class of STORM constellations. One subtle insight afforded
through different STORM constellations is that optimal signal
constellations need not be peaky in frequency dimension (as in
low duty cycled MFSK), in addition to be being peaky in time
dimension. In the process, we discover a new optimal SISO
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constellation which may be called “permuted MFSK” due to
its relation to MFSK but would have better spectral properties
in general.

To close this section, some notational conventions used
throughout the paper are described. Matrices are denoted by
the boldfaced capital letters, and vectors by bold faced lower
case letters. The symbol denotes the Kronecker product. The
matrices , , and denote the transpose, complex-con-
jugate, and conjugate transpose of , respectively. Moreover,

and denote the trace and determinant of the matrix
. The notation refers to the th element of the ma-

trix . The notation refers to the th row of the matrix
. For an integer , is an identity matrix and

is the -length column vector of ones. The block diagonal
matrix with matrices along the block diagonal and
zeros elsewhere is denoted as .

denotes the expectation operator. A function is said
to behave as when . The symbol
is used to denote the complement of the set . The symbol
is used to denote generalized inequality, i.e., if then

is positive semidefinite (psd). The first and second
derivatives of a function at are denoted by
and , respectively. The function always refers to
natural logarithm, unless otherwise specified. Complex, circu-
larly symmetric, Gaussian random vectors with mean and
covariance matrix are said to be distributed.

II. SYSTEM MODEL

Consider a MIMO channel with transmit and receive
antennas. The random channel matrix is assumed
to be constant for a duration of symbols after which it changes
to an independent value. It is assumed to have i.i.d.
entries. The knowledge of the distribution of is known to
the transmitter and receiver. The realizations of however, are
unknown at both ends. With the transmitted symbol denoted as

, the output of the channel can be written as

(1)

The entries of the additive noise matrix are assumed to be
i.i.d. distributed random variables. The symbol is
drawn from a finite constellation or alphabet with matrix-
valued elements.

Two key cases based on the types of constraints imposed are
considered in this work.

1) PPAPR-Constrained Case: It is assumed that the average
SNR at each receive antenna is constrained to be so that

(2)

Moreover, a peak-power constraint is imposed per space–time
slot, namely

(3)

This is most natural and is a practically meaningful peak-power
constraint as it restricts the peak power per antenna and per time

slot (to be at most ). It accurately models constraints on indi-
vidual transmit radio-frequency (RF) power amplifiers in prac-
tice. The PPAPR constraint is that the ratio is taken to be a
fixed constant. This condition ensures that as the average SNR

, the maximum peak power also goes to zero.
2) Peak-Constrained Case: Here, the average-power con-

straint (2) and the peak-power constraint (3) are assumed to
hold. In this case, however, is assumed to be a fixed constant
independent of . In other words, in contrast to the PPAPR-con-
strained case, the peak power remains constrained by (and
does not change) as the average SNR .

For convenience, we will denote the average energy per block
of symbols as .

The noncoherent MIMO Rayleigh-fading channel thus de-
scribed is completely specified by the input constraints and the
transition probability density function (pdf) of conditioned
on being transmitted and is easily seen to be

Finally, there will also be occasion to use the notion of the
PAPR of a constellation which is defined as

(4)

III. MAXIMIZING THE MUTUAL INFORMATION AT LOW SNR
UNDER THE PPAPR CONSTRAINT

Consider the above-defined finite-input and contin-
uous-output noncoherent MIMO Rayleigh-fading channel
over which the input constellation is used with cor-
responding transmission probabilities . The mutual
information between the transmitted and received signals,
normalized by the block length (in units of nats/dimension),
is thus given as

(5)

A closed-form expression for is unfortunately not
known for general SNR. At asymptotically low SNR, however,
and when the input signal satisfies certain regularity conditions
to avoid inputs being prohibitively peaky, the authors in [9]
show that the mutual information is zero up to first order for
the continuous input and continuous output counterpart of the
above channel. Moreover, the mutual information up to the
second order in is also obtained in closed form through a
Taylor series expansion and without any assumption on the
signal structure beyond the regularity conditions. Note that
the expression for mutual information up to second order was
also derived earlier in [10] and [11], but with more stringent
conditions on the input distribution.

For the sake of completeness, the key theorem in [9] for the
continuous input and continuous output channel, slightly mod-
ified to account for the different power normalizations in this
paper, is stated next.

Theorem 1 [9, Theorem 1]: Let denote the pdf of .
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1) First-Order Result: If i) exists at , and ii)

, the mutual information between the
transmitted and received signals and is zero to first order
in , i.e., .

2) Second-Order Result: If, in addition, i)
exists at , ii) , and iii)

, then the mutual information
between and up to second order in is given by

(6)

The applicability of the above result to the discrete input
channel with the PPAPR constraint is next discussed. First, fol-
lowing the proof of the above theorem in [9], it can be seen
to hold for the discrete input (and continuous output) case and
yield the same expression as in (6) for mutual information with
the expectations in (6) now over the discrete instead of contin-
uous input as in [9]. The existence of the first and second deriva-
tives of at are easily verified for the problem at
hand. With the PPAPR constraint in effect, the peakiness condi-
tions, namely conditions 1)ii and 2)ii and 2)iii of Theorem 1, are
also easily verified to hold as well. Hence, it can be concluded
that for a discrete input satisfying the PPAPR constraint i) the
mutual information is zero up to first order in and ii) denoting
the coefficient of in the mutual information of (5)
as

(7)

Evidently, the dominant second-order term in the mutual in-
formation at low SNR is . The problem of interest is
hence to maximize over and under an av-
erage-power constraint and a peak-power
constraint .

Before unveiling the solution to the above problem, we note
that in [9] the mutual information up to second order is max-
imized over continuous input distributions under two different
peak-power constraints. The solutions however rely on the as-
sumption that the input signal has the form

(8)

where is an isotropically distributed unitary random matrix
and is a diagonal (random) matrix with nonnegative entries.
While this imposition entails no loss of optimality for the case
when only the average power is constrained (which is a seminal
result of [18]), it does result in a loss of optimality, and a signif-
icant one at that, when the peak-power constraint of [9] is en-
forced which is that the diagonal entries . Due to the
suboptimal restriction in (8), the maximizations in [9] lead to the

misleading conclusion that it is optimal to use a single transmit
antenna in the low-SNR regime. In [11] also, the authors per-
form the same maximization over continuous input distribu-
tions but under a more relaxed peak constraint
and conclude that a single antenna should be used. Different
from [9] and [11], the optimization problem considered here
does not suboptimally restrict the signals to be as in (8) while
considering averaged power constrained discrete inputs and the
practically relevant peak-power constraint per space–time slot.
These assumptions result in a significantly different and more
challenging problem than those considered in [9] or [11]. In-
deed, in contrast to [9] or [11], our results indicate that in the
PPAPR-constrained problem, at sufficiently low SNR, it actu-
ally helps to use all transmit antennas.

For the PPAPR-constrained problem, the set of all feasible
constellations with cardinality is denoted as and can be
described as shown in the equation at the bottom of the page. It
is assumed, without loss of generality, that , because
otherwise, the average-power constraint cannot be active and
one can therefore solve the problem by changing the average-
power constraint to . Let the PPAPR be denoted as

, a constant in the PPAPR-constrained case as varies.
Let be the maximum mutual information up to second

order achievable by any constellation in the set , so that

(9)

Note that when , the symbol is not used and there-
fore the set of feasible constellations in is included in the
set for any . Hence, is the maximum mu-
tual information up to second order achievable by any constel-
lation of cardinality no greater than . The maximum mutual
information up to second order when there is no upper limit on
the cardinality of the discrete input constellation is defined as

. It will be shown in what is to follow that

(and its associated constellation of size ) is

near-optimal in that it can be very close to (and the as yet
unknown constellation which achieves the latter).

The following theorem is one of the main results in this paper.

Theorem 2 (PPAPR-Constrained Case): Let the coherence
time . When , the maximum second-order mutual
information with an -point input constellation is given as

(10)

An -point constellation (or pmf) achieves with
if and only if (iff) it is of the following form:

(11)
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(12)

where for each , is the th column of a unitary
matrix , , and

(13)

Furthermore, , the maximum second-order mutual informa-
tion with an unconstrained cardinality, is bounded above and
below as

(14)

Proof: The proof is given in Section III-B.

The optimal signal constellation for given in
Theorem 2 can be viewed as a space–time code (employing
unequal transmission probabilities) that achieves the maximum
mutual information up to second order at low SNR. Based on
its structure, it is referred to as Space–Time Orthogonal Rank
one Modulation (STORM) because each nonzero matrix is of
unit rank and is orthogonal to the other constellation matrices
by construction. Two examples of matrices that can be used for
the unitary matrix are the discrete Fourier transform (DFT)
matrix and the Hadamard matrix (when it exists). In one embod-
iment of STORM, can be chosen to be . In this case,
each of the nonzero constellation points is formed
from a column of and this column is repeated over the
antennas. The th point is, of course, the all-zero matrix.

It can be seen that for STORM, the PAPR as defined in (4), is
. Clearly, the ratio between the upper and lower

bounds on in (14) is nearly equal to unity when .
This is evidently true even for moderate and practical values of
PAPR and . As an example, for , , and ,
the ratio is . Hence, even for moderate values of PAPR and

, the point STORM almost achieves (the limit with
unconstrained cardinality) and there is not much to be gained by
using more than points.

A. Remarks

Since STORM achieves a significant fraction of even
for moderate values of and , the following insights from its
structure and mutual information up to second order it achieves
at low SNR are of interest. For brevity, the mutual information
up to second order at low SNR is simply referred to as mutual
information in the rest of this section.

1. It can be seen that the mutual information of STORM in-
creases linearly with the maximum peak power . That it is
an increasing function is to be expected since peaky signaling
is known to achieve the noncoherent capacity in the low-SNR
regime when there is only an average power constraint. More-
over, the mutual information also increases linearly as a product

of the numbers of transmit and receive antennas. The
use of a single antenna is evidently suboptimal by a factor of .

2. A reason that is often cited in the literature for explaining
the efficacy of using a single antenna at low SNR is that the
number of channel parameters that are to be implicitly estimated

is the least in this case. The use of a single antenna however
is not necessary to ensure this and can even be detrimental to
performance as explained above. Consider STORM, where the
received signal when the th nonzero signal is transmitted is

(15)

where and so is distributed.
Therefore, the effective channel (15) does in fact involve only

(and not ) unknown channel coefficients even though
all transmit antennas are used. The optimality of the unit rank
structure of STORM could thus be indeed attributed to the
difficulty of (implicit) estimation of coefficients at low
SNR because it avoids this task by focusing the power on
just effective unknown path gains, while at the same time
making use of all the transmit antennas.

3. Consider the case when in (11), which is
sufficient for point STORM to be optimal. Then the sym-
bols sent by all transmit antennas at any given time are identical
and the fading gains effectively add up at each receive antenna.
So, why not just use a single transmit antenna? All transmit an-
tennas must be used because otherwise the effective received
power is smaller due to the peak-power constraint which limits
the symbol power per antenna and per time slot.

4. A canonical embodiment of STORM is one that results
from setting and to be a -di-
mensional DFT matrix in (11). A convenient feature in this DFT
version of STORM is that the entries of the signal matrices can
be transmitted using PSK symbols with an additional zero point.
Alternatively, a -dimensional Hadamard matrix can be used
for (when it exists). The advantage of using a Hadamard
matrix is that it is enough to transmit real symbols for each
entry, specifically, binary phase-shift keying (BPSK) and an ad-
ditional zero point. Hadamard matrices of dimension exist
when for any natural number and also for many mul-
tiples of . In Appendix B, we show how block decoding of
STORM may be simplified using either the fast Fourier trans-
form (FFT) or the fast Hadamard transform (FHT), when
is a power of .

5. Consider the special case when there is only a peak con-
straint on the input (i.e., ). Here, it can be seen that
STORM has no zero point (so ) and is given by

(16)

Hence, all points are equiprobable and the PAPR is unity, thus
facilitating practical implementation. Moreover, this constella-
tion is near-optimal when there is only a peak constraint and
when as seen from the bounds on in (14) of The-
orem 2.

6. The canonical version of STORM can be seen as a form
of generalized -ary ON–OFF signaling with repetition
coding across the transmit antennas and with unequal proba-
bilities of ON and OFF signaling, with the ON signaling actually
being the classical -ary, equiprobable frequency-shift keying
(TFSK). The larger the allowed PPAPR, the higher the proba-
bility of the OFF signal. In fact, STORM takes advantage of all
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the peak power allowed for each space–time slot when trans-
mitting nonzero symbols while meeting the average-power con-
straint by the inclusion of the zero symbol with as high a prob-
ability as the PPAPR constraint would allow.

7. Consider the special case of a SISO system when there is
only a per time-slot peak-power constraint . Here, Theorem 2
establishes the second-order optimality of equiprobable TFSK
at low SNR among all -ary constellations, and the near-opti-
mality under unconstrained cardinality when . In general,
for SISO systems however, depending on the peak-power and
average-power constraints, an additional zero signal is needed
of probability different from that of the (equiprobable) TFSK
signals.

8. The mutual information of STORM may be expressed as
. For fixed , , and , it increases lin-

early with . This may be attributed to the fact that increasing
with fixed , , and increases the overall peak power

, while simultaneously decreasing the prob-
ability of transmitting a nonzero signal , thereby making the
signals more peaky in the time domain. On the other hand, when

is increased for a fixed and , the overall peak-power
and the probability of transmitting the zero

signal remain fixed but the mutual information increases
with . To get some insight on why this is so, consider the
canonical version of STORM. An increase in implies that the
TFSK transmissions (repeated over each antenna) become more
peaky in the frequency domain.1

9. STORM constellations other than the canonical ones can
also be constructed. For example, one can use the inverses of the
DFT and Hadamard matrices for a choice of . More generally,
if is unitary with unit-magnitude elements so is
where and are permutation matrices. only per-
mutes the columns of thereby renumbering the signals leaving
the STORM constellation unchanged. However, row permuta-
tions induced by would result in constellations that are no
longer peaky in the frequency domain as compared to the canon-
ical DFT version of STORM. It is unclear as to how the com-
plete class of STORM constellations can be constructed. In this
regard, note that the vectors can be arbitrary as long as its
elements have unit magnitudes. So “repetition” across transmit
antennas can involve arbitrary phase rotations or multiplication
by possibly distinct unit-magnitude complex numbers.

10. The cutoff rate for the discrete input (of cardinality ) and
continuous output channel is given by

(17)

The cutoff rate was initially advocated as a design criterion for
modulation schemes in [19] and [20]. It is a lower bound on the
random coding exponent, and also provides an exponentially ac-
curate description of the attainable error probability when com-
municating at the critical rate [19]. Let the argument of

1This was pointed out by a reviewer.

in (17) be denoted as the cutoff rate expression . For the nonco-
herent MIMO channel at low SNR, the cutoff rate expression is
easily shown to be (cf. [21])

(18)
An interesting property of [16] is that when the input
constellation satisfies the regularity conditions,

In the limit of low SNR, therefore, behaves identically to
the mutual information. Therefore, the -point STORM also
maximizes the cutoff rate expression up to second order at low
SNR.

11. An often used noncoherent constellation design criterion
(cf. [22], [23]) is to maximize the worst case chordal distance
which is given by . For STORM,
the worst case chordal distance is the maximum possible as
for every , . Moreover, the differ-
ence between any two distinct matrices in STORM has unit
rank, and hence the scheme would have a diversity order of

at high SNR if employed as a coherent space–time code
[24] whereas constellation design at high SNR for the coherent
MIMO channel is typically geared towards achieving maximum
diversity ( ). Theorem 2 shows that optimal noncoherent
constellations at low SNR have quite the opposite properties
from good coherent constellations at high SNR.

12. Subsequent to the conference version of this paper [25]
(see also [26]), Sethuraman et al. [27] consider a MIMO
Rayleigh-fading channel with the noncoherent assumption and
with the fading process modeled as stationary and ergodic,
as well as correlated over time. The authors characterize
input distributions which are optimal for the stationary and
ergodic MIMO channel, under average-power constraints and
peak-constraints which are per space–time slot similar to the
PPAPR-constrained case here. Interestingly, one distribution
identified in [27] which achieves the capacity up to second
order can be seen to be closely related to the canonical version
of STORM here. While this distribution is obtained for a dif-
ferent fading process, the channel coherence time here can be
thought of as playing the same role as channel memory in [27].

B. Proof of Theorem 2

In this subsection, the proof of Theorem 2 is given. The fol-
lowing definitions and lemmas are needed first from [28].

Definition 1: A convex maximization problem is an optimiza-
tion problem in the following form:

(19)

where is a convex function and is a convex set.

Definition 2: A point on the boundary of a convex set is
called an extreme point if there are no distinct points
such that .



SRINIVASAN AND VARANASI: OPTIMAL CONSTELLATIONS FOR THE LOW-SNR NONCOHERENT MIMO BLOCK RAYLEIGH-FADING CHANNEL 783

Lemma 1: A closed, bounded convex set in is the convex
hull of its extreme points.

Lemma 2: The global maximum of a convex function over
a compact convex set is attained at an extreme point of .
A point in a compact convex set is a global maximizer of a
strictly convex function if it is an extreme point of .

Definition 3: A polyhedron is defined to be the set of points
, where and . A

bounded polyhedron is called a polytope. The extreme points of
a polytope are referred to as vertices.

The next lemma gives the necessary and sufficient conditions
for a point to be a vertex of a general polytope.

Lemma 3: With the same notation as in Definition 3, let
denote the rows of the matrix . Further, for

, let describe the in-
equalities which are binding (active) at , and let be the
matrix with rows . Then is a vertex of iff

.

The following lemma more sharply specifies the vertices of a
special polytope which will be useful in the proof of Theorem 2.

Lemma 4: Consider the polytope defined by

(20)

which is the intersection of the half-plane and
the hypercube . Each vertex of consists of
entries that are either or , and exactly one entry such that

.
Proof: The polytope can be expressed in the standard

form given in Definition 3, by setting

and (21)

where . Let be a vertex of the poly-
tope described by . Then, the rows of which satisfy

should form a matrix with rank by Lemma 3. If
is a vertex for which then there are at least

more linearly independent rows of that correspond to active
constraints. Suppose of them are of the form for

, then at least active con-
straints (out of the remaining constraints) must be of the
form for . Hence, at most one entry of can lie
anywhere between and (call it ). If is such that ,
then of course it is a vertex by Lemma 3 iff for all in
the subset for which and

for all (there are as many such vertices as there
are subsets for which ). In this case, all the
entires of the vertex are either or (set or ).

Proof (of Theorem 2): The problem that needs to be solved
here is essentially

subject to

(22)

where is given in (7). Maximizing is equivalent to
maximizing

(23)

(24)

(25)

Since terms of the form are nonnegative, (25)
follows by replacing all negative terms in (24) by zero. Let
denote the th column of the matrix . The equality in (25)
occurs iff . The strategy is to maximize
the bound in (25) and show later that the signal constellation that
maximizes it achieves equality in the inequality in (25) when

, thereby maximizing in these cases. So, let us
consider the optimization problem

subject to

(26)

In Appendix A, a simple argument is given that shows that the
maximization of (26) is a nonconvex optimization problem. A
two-stage approach is thus adopted for solving the optimization
in (26). In the first stage, the objective function is maximized
over while holding fixed. In the second stage,
the resulting objective function is maximized over . Fur-
thermore, it is shown that the optimization in the first stage
can be split into two successive convex maximization problems
and the optimization in the second stage is a convex minimiza-
tion problem. It is this nice structure that is exploited to obtain
the signal matrices and the probabilities that
jointly optimize the upper bound on mutual information (up to
second order at low SNR) in (26).

Consider first the optimization in (26) over for fixed
. This problem is decomposed into two steps. In the first

step, is fixed for some and the best set
of is found. Note that is equal to the energy of the
th signal and because of the peak-power constraint, it is suffi-

cient to restrict . In the second step, the resulting
objective function is optimized over . Geomet-
rically, we first find the matrices that maximize the
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objective function over the contour and then
optimize the resulting objective over , thereby obtaining
the best contour for an arbitrary but fixed . As it is shown
below, both these problems can be solved as convex maximiza-
tion problems.

With , it is clear that the
objective function in (26) is maximized when for each , is
chosen according to

(27)

Let the eigenvalues of the positive semidefinite matrix be
(the dependence on is implicit). Then, the solution

of (27) is upper-bounded by the solution of

(28)

with equality iff the additional constraints hold
for each for the matrix that achieves the maximum in (28).
Since the objective function in (28) is strictly convex while the
constraint set is a polytope, the problem in (28) is a strictly
convex maximization problem. Hence, by Lemma 2, a solution
is globally optimal if it is a vertex of the constraint set. In this
case, the constraint polytope has vertices which can be
found by inspection to be

(29)

since none of them can be expressed as a convex combination
of any other points in the set, and any point in the set can be
expressed as a convex combination of the points in (29). Now,
since all the vertices except the all-zero vector give the same
value for the objective function, is the sought maximum.
This in turn implies that all the matrices have to be of
unit rank for the objective functions to achieve their maximum
value of for each (we adopt the convention that the all-zero
matrix is of unit rank). Let the number of matrices in
which are not be . If more than one of the ’s are zero,
they would all correspond to the same zero signal point
and their respective probabilities would simply add up, resulting
in one effective zero symbol matrix. Therefore, or

depending on whether or not there is a zero symbol.
When , consider the following constellation :

(30)

(31)

where the vectors and are constrained as in (13). Note
that the set of matrices in (30), (31) are of unit rank and satisfy

. Hence, they solve the problem
in (28). Now, since , using (13), it follows that

and hence they also solve the problem in
(27). Moreover, since , any pair of different constellation
matrices have orthogonal columns (since ’s are orthogonal),
which ensures that (25) holds with equality. It will eventually be

shown that the optimal values of the nonzero are all equal
with . This in turn implies that the structure in
(30) and (31) is also necessary.

When , the set of in (30) can no longer be selected to
be orthogonal to each other. Nevertheless, a set of rank-one ma-
trices with the structure given in (30) but with a nonorthogonal
set of (normalized in the same way), still solves both (27) and
(28). Therefore, the expression serves
as an upper bound on the maximum mutual information up to
second order achievable by any constellation of cardinality of

, which is .
In summary, the best constellation can be specified

for any set of nonnegative . It remains to find the best
according to

(32)

subject to (33)

(34)

For a fixed , this is also a strictly convex maximization
problem over a polytope. Hence, a vertex of the polytope is nec-
essary to achieve the global optimum. The polytope constraint
set is exactly of the form considered in Lemma 4 which states
that each vertex would consist of entries that are either

or , and at most one entry such that .
For vertices for which , it is necessarily the case
that all entries are either or .

Consider the second stage of the optimization which is over
. Following the result of the optimization in the first

stage, the structure of the optimal and the corresponding prob-
abilities are of the form

(35)

(36)

where denotes the number of entries in that are equal to
. Note that when , the constellation point cor-

responding to the entry such that is not
transmitted. We know that whenever (33) is strict, there cannot
be an extreme point of the constraint set formed by (33) and
(34), which has an entry such that . There-
fore, in the case of a strict half-plane constraint, we will take

for the optimal constellation without any loss of
generality, which simplifies the subsequent convex minimiza-
tion problem. The cardinality of the constellation depends on
the number of nonzero probabilities in the optimal constellation
and is related to by in general.

With the structure of the optimal , the optimal set of proba-
bilities are determined next in terms of and . Following that,
the values of and are obtained that maximize the resulting
objective function. For convenience, consider minimizing the
negative of the objective function in (32) after the optimal is
substituted as follows:

(37)
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subject to (38)

(39)

The optimization over in (37) is the more commonly studied
convex minimization problem [29]. The Lagrangian can be
written as

(40)

It can be verified that Slater’s conditions [29] are satisfied
and hence, strong duality holds. Therefore, the Karush–
Kuhn–Tucker (KKT) conditions are both necessary and suffi-
cient for the optimal solution and are given as the expressions
at the bottom of the page. By eliminating the slack variable ,
we get

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

From (46), it can be seen that can take one of two values,
namely

or (51)

Points with zero probability are redundant and since the optimal
number is determined only later, it may be assumed that the

probabilities for are the same and given in
(51) and denote these probabilities simply as “ .” Similarly,
from (47), can take one of two values, namely

or (52)

Four cases must be considered to find the solutions to the
KKT conditions. Recall that .

Case 1:

The strict inequality in (50) implies that from (44).
Since the power constraint is a strict inequality, we may take

from the discussion that follows (36). Therefore,
is necessary to satisfy (49). From (51), we obtain

. The condition implies that
. The strict inequality in (50) together with

implies that this case holds when , which is never
true. Therefore, this case does not occur.

Case 2:

The strict inequality in (50) implies that from (44).
Since the power constraint is a strict inequality, we may take

from the discussion that follows (36). Since
, we have from (45). Therefore,

from (51) and . From (50), this case applies when
and .

Case 3:

Since , we must have by (45). There are
three subcases here, viz., i) , ii)

, and iii) . We first consider
subcase i).

i) Using the values and from
(51) and (52) in the power constraint equality, we can solve for

as . Substituting this value of in (51)
and (52), we obtain

(53)
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(54)

Using the above probabilities in the objective function given
in (37), we observe that

(55)

which means that is a concave function over . Since
, we get from (52) that . Therefore, the range of in this

case is given by . Since the optimization of
over is a concave minimization problem, the minimum is

either at or by Lemma 2.
Choosing gives from (52),

and therefore

(56)

Consequently, from (49) we get that

(57)

If were instead chosen to be , then from (53) and
(54), , , and, therefore,

. Since we are yet to optimize over , the
above solution clearly is identical to that obtained in (56) and
(57). So we may choose itself as the solution.

For , since , this case requires .
Moreover, the power constraint equality requires that

. Hence, this subcase solves the convex optimization problem
for the cases and .

Even for subcases ii) and iii), it can be easily verified that we
get essentially the same solutions as the previous subcase.

Case 4:

The cases and are
solved completely through Cases 2 and 3. This is true because
by strong duality, the constellations obtained in Cases 2 and 3
are both necessary and sufficient for optimality. Moreover, since

does not occur, we do not solve for Case 4 since
we will get no new solutions or insights.

The last step is to find the best possible . We revert to the
problem which is a maximization of the objective function
for convenience. From Case 3, which yields the only pertinent
solution for , the objective function with the optimal
probabilities given in (56) and (57) is

(58)

Notice that is an increasing function of , and needs to
be chosen as large as possible. However, if is chosen so that

, inequality (25) would be strict since it is not possible to
make the columns of all pairs of different constellation matrices
orthogonal. Therefore, is optimal among satisfying

. When we take the limit as , we get an upper
bound on the mutual information which is not achievable (hence
the strict inequality for the upper bound in (14)).

To complete the proof, notice that we may use the jointly
optimal and with the structure of constellation points given
in (30),(31) so that the upper bound in (25) is achieved with

equality when . Therefore, the optimal constellations
have been obtained for the case . When , we
can obtain an upper bound on the maximum achievable mutual
information by letting in (58) (and multiplying by the
factor ).

C. Spectral Efficiency

Consider the normalized energy per bit for reliable commu-
nications which is given as

(59)

where is the Shannon capacity for the channel in bits per
dimension. For the case when is a nondecreasing con-
cave function, it can be seen that (59) achieves its minimum
value over all , as . However, this is not true in the
PPAPR-constrained case. Indeed, since the capacity is ,

as . Therefore, it is not energy efficient
to operate at asymptotically low SNR in this case. The mutual
information of STORM at any SNR is

(60)
The expectations in (60) can be calculated using Monte Carlo
integration. Thus, the normalized energy per bit required for
STORM can be determined as , over
the entire range of SNRs. It can be seen through extensive sim-
ulations over a variety of cases that the minimum energy per
bit typically occurs at a low but nonvanishing SNR. STORM
should hence be used in the vicinity of this SNR, for maximum
spectral efficiency. In the absence of the capacity of the nonco-
herent MIMO channel at a general SNR, however, there is no
fair yardstick to compare the energy per bit of STORM against
that of the capacity achieving scheme.

IV. THE PEAK-CONSTRAINED CASE

In this section, the peak-constrained problem is considered
where the peak constraint in (3) is a fixed constant, inde-
pendent of the average power . It can be shown by a simple
time-sharing argument that the channel capacity in this case is
concave and nondecreasing in . Therefore, the normalized en-
ergy per bit given in (59) can be seen to attain its minimum
value over all , as . Let us denote the normalized min-
imum energy per bit for our channel model by , in keeping
with common usage [6]. Since is a nondecreasing func-
tion of , it can be assumed without any loss of generality that
the average power constraint is instead of

. The capacity function (in bits per dimen-
sion) admits the following Taylor series expansion:

(61)

where and are the first and second derivatives of
computed in nats per dimension. The notation and units

introduced above for , , and will be used in the
rest of this paper. The capacity per unit energy (in bits per joule)
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is the reciprocal of , and is equal to in the
peak-constrained case, and either metric can be considered to be
a measure of energy efficiency. Therefore, the notions of mini-
mizing the energy per bit and maximizing the information rate
per unit energy will be used interchangeably. The minimization
of energy per bit is considered in Section IV-A. Note, however,
that since this minimum occurs at a vanishing SNR, a fixed rate
(in bits per second) of communication can be only achieved in
the limit of infinite bandwidth. It is hence of interest to commu-
nicate at low but nonvanishing SNR and also do so in a band-
width-efficient manner, which brings us to the notion of wide-
band slope introduced in [6].

The slope of the capacity function versus (also called the
spectral efficiency function) in bits per second per hertz per 3
dB at zero spectral efficiency is defined as the wideband slope
in [6] and was shown to be given in terms of and as

(62)

The motivation for considering the wideband slope as a per-
formance metric is that, while achieving is desirable for
energy efficiency, the rate of convergence of to as

is also an important factor at low , which in turn
is closely tied to spectral efficiency. The higher the wideband
slope, the greater is the spectral efficiency when operating at
small but nonvanishing SNR. This point about the importance
of the wideband slope was highlighted through several exam-
ples in the insightful work of [6]. An important example pro-
vided there was that of noncoherent communications with an
input average-power constraint alone, and the wideband slope
in this case was found to be in contrast to that of co-
herent communication where it is positive. This result implies
that to approach , the bandwidth for reliable noncoherent
communications becomes prohibitively large and the associated
signaling scheme prohibitively peaky, and therefore no realistic
(i.e., bandwidth-limited and peak-limited) scheme can achieve

.
In this work, the noncoherent MIMO channel is considered

with a peak constraint on the input, in addition to the average-
power constraint. It is shown that with the additional peak con-
straint, which is necessary for meaningful results at low SNR,
there is a tradeoff between the minimum energy per bit and the
wideband slope. This provides a far more detailed characteriza-
tion of the wideband slope than if only the average-power con-
straint were imposed, and in particular it shows that it is possible
to have provided the peak constraint on the input is less
than a certain constant. In the process, the point constella-
tion is derived in Section IV-B from among constellations that
achieve minimum energy per bit (or equivalently, ) that is
optimal in wideband slope (or maximizes ), which inter-
estingly, turns out to be STORM again. STORM is hence op-
timal in spectral efficiency in the wideband regime. Apart from
providing fundamental limits on peak-limited MIMO nonco-
herent communications, our results and conclusions also temper
the pessimistic conclusions that result from the consideration of
noncoherent communication under just an average power con-
straint [6].

A. Achieving Minimum Energy Per Bit

In this subsection, the necessary and sufficient conditions for
a constellation to achieve are derived. First, the following
definition and lemma are needed from optimization theory [28],
[29].

Definition 4: A function is strictly quasi-concave over a
convex set iff for any , and for

(63)

Lemma 5: The global minimum of a strictly quasi-concave
function over a compact convex set is attained at a point

only if is an extreme point of .

Theorem 3: Consider a constellation with nonzero matrices
and respective probabilities , and the zero

matrix with probability . Let satisfy the average power con-
straint and the peak constraint (3) as
in the peak-constrained problem. Then, achieves the capacity
per unit energy as iff its constellation matrices and re-
spective probabilities are of the following form:

(64)

(65)

(66)

(67)

where for each , , , and
. The capacity per unit energy achieved by the above

constellation is

bits per joule (68)

Proof: Let the mutual information between and the
output be denoted as (in nats per dimension). It is
known from [30] that to achieve the capacity per unit energy,
it is sufficient to use one symbol apart from the zero energy
symbol. Therefore, our formulation, which assumes a discrete
input with an arbitrary number of points, is without any loss
of generality. The optimization problem that is to be solved is
given as

subject to

(69)

A general formula for was derived in [6] and is given as

(70)
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Since

(71)

an upper bound for the optimal value of the problem in (69) is

subject to

(72)

The objective function in (72) can be evaluated as

(73)

Consequently, the problem that needs to be solved is

subject to

(74)

Relaxing the peak constraint, the optimal value of the problem
in (74) over the signal constellation (but with the probabilities
fixed) is lower-bounded by the optimal value of the problem

subject to

(75)

The optimal values of problems (74) and (75) are the same iff
the that solves (75) also satisfies .

As in the PPAPR-constrained problem, the above problem
can be solved as a two-stage optimization, where in the first
stage, the probabilities are fixed and the constellation

is optimized. In the second step, the resulting objec-
tive function over is optimized over .

Consider a fixed, feasible, but otherwise arbitrary .
It can be verified that for each

(76)

is solved iff has unit rank.
Therefore, the problem in (75) can be rewritten as

subject to

(77)

Let . Consider the set

(78)
Since is strictly concave
for every real , the set is convex. Therefore, considering
any two points where
and using Definition 4, is a
strictly quasi-concave function of . Hence, from Lemma 5, the
solution of (77) is achieved at a vertex of the constraint set.
Using Lemma 4, each vertex of the constraint set consists of

entries that are either or , and exactly one entry
such that .
It can therefore be assumed, without loss of generality, that

the optimal and the corresponding probabilities are

(79)

(80)

where, for convenience, the symbol is introduced to denote
the number of entries in that are equal to . Since the
objective function is a symmetric function of , the specific ar-
rangement of the entries is immaterial. Using this structure for

, the problem in (77) can be rewritten and bounded from below
as

(81)

subject to

(82)
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The problem in (82) is easily seen to be the minimization of a
strictly quasi-concave function over . Therefore, the solution
has to be among the vertices of , i.e., either

or . Notice that with either choice of , the ob-
jective function is , and is independent of .
Therefore, the upper bound on the optimal value of the problem
in (69) is

(83)

Since , for equality to hold in the inequality
leading to (75), it is necessary and sufficient that the nonzero
matrices be of the form

(84)

where , are such that
. By substituting (84) in (69), a lower bound on the op-

timal value of (69) is obtained, which coincides with the upper
bound in (83), implying that (83) is the optimal value of the
problem in (69). From the power constraint,
must be true and . Therefore, it can be con-
cluded that

(85)

Note that the capacity per unit energy in (68) is independent
of the number of points . In particular, it can be achieved with
a two-point constellation.

Corollary 1: The following two-point constellation achieves
the capacity per unit energy as the average power :

(86)

(87)

where and are column vectors such that
.

The above two-point constellation is referred to as MIMO-
OOK (on–off keying). This constellation can also be obtained
directly through a simplified general formula for the capacity
per unit energy derived in [30]. It turns out that the simplified
formula in [30] can be evaluated using similar techniques to
those used in the proof of Theorem 3, and is also a more direct
approach than the derivation of the capacity per unit energy in
[31]. For the sake of completeness, it is given in Appendix C.

Clearly, Theorem 3 implies that there is a large class of con-
stellations which achieve . For instance, the cardinality

can be any . Moreover, only the sum of probabilities
of the nonzero points is constrained to be , while the in-
dividual probabilities can be arbitrary. Further, there is no re-
striction on the relationship between and . In
particular, can be taken to be all equal to a unit rank ma-
trix with elements of equal magnitude (equal to ) for
all . In this case, the nonzero points would
coincide and become one nonzero point with probability ,
thereby reducing to the two-point MIMO-OOK constellation of
Corollary 1.

B. Maximizing the Wideband Slope

A key insight provided by [6] is that even though different
schemes may achieve , an analysis of their wideband
slopes could reveal vast differences in the rate of growth of their
energy efficiencies around , and therefore differentiates
their spectral efficiencies. The wideband slope, which is the
measure of spectral efficiency at low but nonvanishing SNR,
is therefore critical in the analysis of wideband channels. Our
next aim is therefore, to optimize the wideband slope over
constellations which achieve . The next theorem provides
a formula for the wideband slope when evaluated for an
arbitrary generalized OOK constellation.

Theorem 4: Consider a constellation with nonzero matrices
and respective probabilities , and the zero ma-

trix with probability . Then we get (88) at the bottom of the
page.

Proof: See Appendix D.

The following corollary indicates a fundamental limitation in
approaching the capacity per unity energy for a constellation of
arbitrary cardinality.

Corollary 2: Consider a constellation with nonzero ma-
trices and respective probabilities , and the
zero matrix with probability . Let satisfy the average and
peak power constraints in the statement of Theorem 3. Sup-
pose achieves the capacity per unit energy. Then the wideband
slope is when .

Proof: Since achieves the capacity per unit energy, it
satisfies the necessary conditions stated in Theorem 3. From
Theorem 4, the wideband slope is nonzero only when the matrix

(89)

is positive definite for all pairs . The proof of the corollary
follows when the necessary conditions for achieving the ca-
pacity per unit energy in Theorem 3 are substituted in (89) and
simplified.

Theorem 5: Among all constellations of Theorem 3 which
achieve , with points, STORM has the maximum
wideband slope.

if is positive definite

otherwise.
(88)
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Proof: Since the constellations under consideration
achieve , the numerator in (88) is a fixed constant. Fur-
ther, given the necessary conditions for the constellation to
achieve , the denominator of the wideband slope can be
simplified as

(90)

where the matrices are of unit rank with entries of
equal magnitude , and (to ensure that

is positive semidefinite ). Clearly, (90) is min-
imized when there exist rank-one matrices such that

. Such a set exists for , and is de-
noted by , where the definitions for and

are the same as in Theorem 2. The problem that needs to be
solved is thus as shown in (91) at the bottom of the page. The ob-
jective function in (91) can be easily shown to be a Schur-convex
function [32] of . Hence, the minimum occurs
when each of the probabilities is equal to . The
optimal value of (91) is therefore

(92)

Clearly, has to be made as large as possible, but to ensure
achievablity of the optimal value in (91), it can be no greater
than . Therefore, set . Evidently, the solution
to (91) when would provide an upper bound on the
maximum wideband slope.

Theorem 5 establishes the optimality of STORM among
-point constellations in the peak-constrained case. This

means that STORM is spectrally most efficient among all
(or fewer) point constellations that achieve maximum capacity
per unit energy in the low-SNR regime.

The following corollary provides the wideband slopes of
MIMO-OOK and STORM.

Corollary 3: The wideband slopes of MIMO-OOK and
STORM are respectively

if

if
(93)

if

if
(94)

Proof: The wideband slopes follow by substituting the
MIMO-OOK and STORM constellations in the result of The-
orem 4.

C. Remarks

Since STORM was obtained as the optimal constellation even
in the PPAPR constrained case, many of the remarks on STORM
following Theorem 2 and in Section III-A apply even to the
peak-constrained case. Here we only state new insights pertinent
to the peak-constrained case.

1. From (68), it is seen that . Therefore,
for asymptotically large peak powers, the well-known result on
the capacity per unit energy with only an average power con-
straint [6] which is common to both coherent and noncoherent
MIMO channels, is recovered. Indeed, when , we ob-
tain the minimum energy to transmit one bit of information to
be 1.59 dB, which is a classical result. By relaxing the peak
constraint, STORM can be seen to be optimal even for the case
when there is merely an average power constraint (or with re-
spect to infinite bandwidth capacity).

2. When the signals are just subject to an average power con-
straint, it is shown in [6] that for the noncoherent MIMO
channel. Therefore, signals whose energy per bit approaches

would have to have bandwidths that become prohibitively
large. However, when there is an additional peak-power con-
straint which is a fixed constant, and for the case when the
normalized peak power , Corollary 3 shows that
is strictly positive. Hence, it is realistic to design signals that
achieve the in this scenario for low but nonvanishing
SNR. Similar insights were also noted in [12] but in the sim-
pler context of the SISO Rician-fading channel with unit block
length under peak and average power constraints.

3. While both MIMO-OOK and STORM achieve , ac-
cording to Corollary 3, the wideband slope of STORM is higher
by a factor of . This means that at a certain energy per bit and
for the same transmission rate, and as SNR , the bandwidth
needed by STORM for the same spectral efficiency is less than
that of MIMO-OOK by a factor of . Given typical values of
the coherence time , this higher spectral efficiency of STORM
can translate into huge savings. To give a sense of the signifi-
cant gains, Figs. 1 and 2 plot the spectral efficiency versus the
energy per bit for STORM and MIMO-OOK.

4. Figs. 3 and 4 plot the energy per bit and wideband slope
of STORM versus the normalized peak power , for dif-
ferent values of . As the normalized peak power increases,
it is seen that the decreases. This is expected as peakier
signaling is more energy efficient. However, as the normalized
peak power gets close to , the wideband slope approaches .
In fact, the wideband slope attains its maximum at an interme-
diate value between and (say, ). Since for any

(91)
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Fig. 1. Plot of spectral efficiency versus energy per bit of STORM using the
second-order approximation of ��� � in (95), for different values of �� � .

Fig. 2. Plot of spectral efficiency versus energy per bit of STORM using the
second-order approximation of ��� � in (95), for different values of � .

point in the region there is a point corre-
sponding to with lower and the same
wideband slope, it makes most sense to operate in the region

. Assuming only an average power constraint,
the analysis in [6] shows that for noncoherent commu-
nications. The scheme that achieves the has the nonzero
signals migrating to in amplitude as . The results in
[6] show in effect that it is unrealistic to realize the peak-uncon-
strained minimum energy per bit (STORM having zero wide-
band slope for all is clearly a stronger statement).
Under realistic assumptions on the peak constraint, however, it
has been shown here that is possible when .
Moreover, a sharp characterization is provided which shows that
there is a tradeoff between and for STORM in the re-
gion .

5. For the same number of bits transmitted reliably per joule
at low SNR, MIMO-OOK requires an operating SNR which is

decibels smaller than that of STORM. This can be
seen from the fact that the wideband slope of STORM is times
that of MIMO-OOK and that mutual information per joule is
given as

(95)

Fig. 3. Energy per bit (decibels) of STORM versus �� � for different � .

Fig. 4. Wideband slope of STORM versus �� � for different � .

and the wideband slope is . Now, since the
peak power is a fixed constant, this implies that the PAPR of
MIMO-OOK at any small but nonvanishing SNR would be
greater than that of STORM by a factor of . Since in the
low-SNR regime, peakiness of the signal constellations is a
crucial factor, using STORM can potentially result in large
reductions in the required PAPR and facilitate implementa-
tion. These large savings are illustrated in Fig. 5, where the
approximation of versus is plotted for STORM and
MIMO-OOK. In the example shown, the convergence to the
capacity per unit energy is faster for STORM by a factor of

9 dB relative to MIMO-OOK.
6. It has been shown in Corollary 2 that whenever ,

the wideband slope is . Therefore, even though the noncoherent
capacity per unit energy is bits per joule, it is prohib-
itively expensive (in terms of bandwidth) to reliably transmit at
any rate more than the peak-constrained capacity per unit energy
evaluated at which from (68) is bits
per joule. Hence, the capacity per unit energy at can
be taken to be the realistic limit for noncoherent MIMO com-
munication. Note that this limit is also bits per joule smaller
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Fig. 5. Plot comparing first-order approximation of ��� ��� in (95) vs. � for
STORM and MIMO-OOK for different values of �� � .

Fig. 6. Plot of first-order approximation of ��� ��� in (95) versus � for
STORM, and its convergence to the capacity per unit energy, for different
values of �� � .

than the coherent capacity per unit energy. Since the analysis of
the noncoherent channel neither assumes any particular scheme
for channel estimation nor does it ignore the resources for (im-
plicit) channel estimation, the realistic capacity per unit energy
of bits per joule can be argued as being more fun-
damental than the coherent capacity per unit energy of
bits per joule. The difference between the two can be thought of
as the fundamental or minimal cost of (implicit) channel esti-
mation.

7. The dependence of on , , and is only through
the product . So, increasing one or more these quan-
tities has the effect of lowering . However, this effect
is beneficial when and beyond that the tradeoff
between energy efficiency and bandwidth efficiency is quanti-
fied here that allows a designer to choose a suitable operating
point. To illustrate this point, Fig. 6 plots the approximation of

versus for different values of . It is evident
from Fig. 6, that even as gets close to one, the bits re-

Fig. 7. Plot of first-order approximation of ��� ��� in (95) versus � for
STORM, for different values of � .

quired to transmit reliably converges to the capacity per unit
energy at much smaller SNRs (and hence larger bandwidths).
Since the PAPR of STORM at SNR is , it is inter-
esting to note that when is fixed, increasing decreases
the PAPR required for the same energy per bit which is an ad-
vantage in practice. Increasing with fixed, decreases

, and therefore reduces the peak-power per antenna and time
slot (though not changing the PAPR), which may also be helpful
in practice.

8. An interesting observation from Figs. 3 and 4 is that using
more receive antennas always lowers , while it does not
always increase the wideband slope. Fig. 7 illustrates that while
the approximation of increases with in general, the
convergence to the capacity per unit energy occurs more slowly
and hence a lower SNR is needed to operate close to it as
increases.

9. Even though the optimal scheme for a cardinality more than
is yet unknown, STORM offers a concrete solution whose

structure is also simple and practical. In [6], the positive impact
on the wideband slope of using constellations with cardinality
greater than two is illustrated via several contexts other than
under the noncoherent assumption. Even so, following [30] and
due to analytical convenience, many recent papers [12], [31],
[33] in noncoherent communications focus on the two point ON-
OFF scheme to achieve the capacity per unit energy. The results
in this section demonstrate that there are compelling reasons
to look beyond the two point ON-OFF scheme in the low-SNR
regime.

10. Recently, the authors of [34]–[37] have investigated the
possibility of channel coherence length scaling with SNR, so as
to diminish the cost of acquiring channel knowledge. It should
be interesting to pose and solve the optimization problems of
this work under such scenarios.

V. CONCLUSION

Two important problems are posed on reliable communica-
tions over noncoherent MIMO spatially i.i.d. Rayleigh-fading
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channels at low SNR. In both formulations, an average-power
constraint on the input and a natural per-antenna, per-time
slot peak-power constraint are assumed. In the first problem
formulation, the peak-power to average-power ratio is held
fixed (PPAPR-constrained) and the mutual information which
grows as is maximized up to second order jointly
over input signal matrices and their respective probabilities,
when the cardinality of the constellation is no greater than

( is the coherence block length). In the second problem
formulation (peak constrained), the peak power is a fixed
constant independent of SNR. Here, necessary and sufficient
conditions for a constellation of any cardinality to achieve
the minimum energy per bit are derived. Over the set of all

-point constellations which achieve the minimum energy
per bit, the second-order behavior of mutual information is
optimized. The resulting constellations are both first- and
second-order optimal among all -point constellations.
Both the PPAPR-constrained and peak-constrained problems
result in finite-dimensional nonconvex optimization problems.
Even so, they admit elegant solutions in closed form, which
are identical in both formulations. This common solution is
referred to as space–time orthogonal rank-one modulation
(STORM), and it provides several new insights on noncoherent
communications at low SNR.

In the PPAPR-constrained case, it is shown that the
-point STORM is near-optimal with respect to the maximum

mutual information up to second order with unconstrained car-
dinality even for modest values of and PAPR. Therefore, there
is not much to be gained by using more than points in the
PPAPR-constrained case. In the peak-constrained case, the ap-
proach in this work provides a sharp characterization of the first-
and second-order behavior of noncoherent MIMO capacity, that
also sheds light on the cost of implicit estimation of channel
state information in the low-SNR regime. The energy per bit
and the wideband slope achieved by STORM also reveals a fun-
damental energy-versus-bandwidth efficiency tradeoff that en-
ables the determination of the operating (low) SNR and peak
power most suitable for a given application. Moreover, while the
more conventional MIMO on–off keying (OOK) also achieves
the minimum energy per bit, STORM has a wideband slope that
is times greater which translates into an increase in bandwidth
efficiency (or a decrease in the PAPR) by a factor of in the
wideband regime. Given typical values of the coherence block
length , these gains are potentially huge.

APPENDIX

A. Proof of Nonconvexity

A simple argument is given to show that (25) is a nonconvex
optimization problem.

We need the following definition of matrix convexity from
[29].

Definition 5: A function is matrix
convex with respect to matrix inequality if for any positive
semidefinite and for any

(96)

Since is a set of complex matrices, the optimiza-
tion over the signals amounts to an equivalent joint optimiza-
tion over the real and imaginary parts of given by

. In order to show that this joint optimization is
nonconvex, we will consider the contour given by .
With the imaginary parts being zero, the function in (25) be-
comes

It can be seen that is matrix-convex over
, and is a nondecreasing convex function

over positive semidefinite matrices . Therefore, the compo-
sition is a convex function

over [29]. Further, since and are convex
functions of [29], the constraints and

are convex sets in . For an arbitrary
but fixed set of probabilities , the objective function is
convex in , while the constraint set is the intersection
of convex sets and is hence convex. Therefore, the problem
of optimizing (25) over is a convex maximization
problem and not a convex optimization problem. Since for a
fixed , the problem of optimizing over is a
nonconvex optimization problem for the imaginary parts of
fixed, the joint optimization over and is also
nonconvex.

B. A Low-Complexity Block Decoder

In some applications, decoding of a block of symbols at a
time may be required. This need arises for instance in uncoded
systems, where there is no coding across blocks. Another pos-
sibility is when there is coding across blocks, but hard-decision
decoding is employed at the receiver so that the blocks of sym-
bols are first decoded via the maximum a posteriori probability
(MAP) rule following which the outer code is decoded. In all
such cases, we show in this section that the optimal MAP de-
coding of STORM can be simplified using FFT or FHT algo-
rithms.

Consider the -point STORM as described in (11) and
(12). Let the received signal matrix be . The optimal
MAP rule to decode a block at the receiver is

(97)

(98)

For convenience, we will first find the maximum in (98) among
the nonzero signal matrices, and then compare it with the metric
for the zero matrix. Substituting STORM that is defined with
permutation matrix , we get that the maximum metric among
nonzero matrices is

(99)
where is a sufficient statistic, which is simply
the received matrix with the permutation removed. The term
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can be simplified by applying the Wood-
bury’s identity, i.e., using

Also, using the identity , (99) becomes

(100)

Clearly, among the nonzero constellation matrices, the MAP
metric is maximized when is maximized. Let be the

dimensional DFT or Hadamard matrix. Then each row of the
matrix would represent the DFT or Hadamard transform of
the corresponding row of . The nonzero constellation matrix
with the maximum MAP metric would therefore correspond to
the column of with the maximum -norm. The DFTs
or Hadamard transforms involved can be efficiently computed
using fast algorithms (FFTs and FHTs). Now, the metric corre-
sponding to the zero matrix would be

(101)

Since this is a constant for a given received signal, we can divide
the metric in (100) by (101) and then take the natural logarithm
of the resulting expression so that

(102)

Now letting , the final simplified
decoding rule can be given as

if
if .

(103)

C. Derivation of MIMO-OOK

Theorem 6: The capacity per unit energy (in nats per joule)
for the i.i.d. MIMO block Rayleigh-fading channel with a peak-
power constraint on the input signal is

(104)

and is achieved as by the two-point constellation given
as

(105)

(106)

where , and .

Proof: From [30], it is known that to achieve the channel
capacity per unit energy, it is enough to transmit one nonzero
symbol, given in (105), apart from the symbol . Since we are
dealing with a memoryless, discrete, and matrix input channel
(1) with the cost function given by , the ca-
pacity per unit energy under a fixed peak-power constraint is
given by [30]

(107)

Using the expression for the Kullback–Liebler distance which
can be obtained easily (cf. [17]), we obtain

(108)

(109)

Let the matrix have eigenvalues . Then (109) can
be upper-bounded as

(110)

(111)

(112)

The expression in (111) is obtained by noting that since
is a convex function of

, the supremum in (110) is achieved
at the extreme point by Lemma 2. Since

is a monotonically increasing function of
, we obtain (112) by substituting the maximum value of .

The inequality in (110) is achieved with equality when is of
unit rank, , and . The supremum
in (111) is achieved when , and the unit rank
satisfies both as well as
which in turn is true iff it is of the form given in (105).

To satisfy the average power constraint, set .

D. Proof of Theorem 4

The results regarding generalized on–off signaling given in
[6] are employed. In particular, note that Theorem 10 in [6] pro-
vides the and achieved by a generalized on–off sig-
naling scheme. For convenience, that result is summarized here.

The generalized on–off signaling scheme has a mass at the
all-zero matrix . The input pdf conditioned on the input
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(118)

being nonzero is denoted by , with distribution . With
the input pdf conditioned on the all-zero matrix given by ,
the input pdf is

(113)

Denoting the pdf of the output conditioned on the input by
, the output pdf corresponding to is given by

(114)

The wideband slope achieved by generalized on–off sig-
naling is

(115)

where denotes the Pearson’s -divergence and is defined
as

(116)

For the channel model under consideration in this paper, we
have

and using the above expressions in (116), one obtains

(117)

The above expression can be evaluated using the result from
[38] that if is distributed, then

if is positive definite. Otherwise,
the expectation diverges. Hence (117) becomes (118) (shown

at the top of the page) if is positive defi-
nite , and otherwise. Simplification of (118) results in

given in Theorem 4.
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